Several areas are currently worked on within two lab spaces that I am involved in directing: The Control of Gene Expression Lab, which I started in 2001, and the Pediatric Retinal Research Lab (PRRL), which the ERI activated in 2012 in association with the support of the Pediatric Retinal Research Foundation (VRRF). We are operating still, under COVID19 work protocols.

In search of reliable mobile fast tests for COVID-19 Antibodies.

While all research labs were shut down for a few months, late March to mid June 2020, for all but COVID19 related research, I turned my biochemical skills to a project to help evaluate one version of a serum COVID-19 antibody test that can use a single droplet (10 microliters) of blood from a finger-poke and which gives a reliable result in 15 minutes. Also without using any powered equipment. Cheap, mobile reliable tests like this can be used in almost any location. The problem January to March 2020 was that many unreliable kits for such tests were rolled out mostly by firms looking to cash in on public fear. The main problem with those tests kits was that they either 1) fail to detect antibodies to COVID19 when people have them, or 2) they say you are positive for antibodies to COVID19 BUT you are not.

Using finger-tip blood for tests of this type is possible, and in fact there are FDA and EU approved tests that use this format (lateral flow test) for AIDS and for Legionnaires Disease. However, those tests have been around for some time and were of course tested to confirm their reliability. So I got into with a manufacturer of antibody-based research reagents when I heard they were turning their expertise to making a reliable family of tests for COVID19 antibodies in blood. This company, I already knew, has made reliable reagents I have used in my own research lab for years, and their reagents had worked where others had failed to deliver. Working with one and now a second of our medical school students, we started a research study to evaluate this particular test system and have had the study approved by our Biosafety Committee and our IRB (Institutional Review Board). After testing about the first 30 volunteers, we already see that the test does NOT suffer from false positives, and it does detect antibodies to COVID19 in persons who have also had positive antibody tests from the standard clinical arm-drawn blood test that is FDA approved.

We continue the study, underway now, and continue to recruit volunteers for a finger-poke based testing. Our test subjects are persons who have had a standard clinical serum antibody test (positive or negative) or persons who have had COVID19 and are now recovered from the illness. The official recruitment information and how to contact us is in our recent blog post here:

COVID19 Serum Antibody Test Research Project – at Oakland University.

I Want You to Flatten The Curve
Uncle Sam Wants You to Flatten The Curve

(Updated September 25 2020): We installed an Illumina iSeq-100 DNA sequencing system this past August and have tested several sample configurations. In late 2019 and early 2020 we completed four system runs and successfully generated DNA sequencing variant call data for over 90 patient DNA samples for several Families with rare inheritable blinding conditions: FEVR (Familial Exudative VitreoRetinopathy), Norrie Disease, and Retinoschisis (RS). We continue to analyze the data from over 90 patients, as this involves computational analysis that I design and teach to our group along with our sequencing technologist Wendy Dailey. Being a heavy user of computer and software tools is now a blessing in this COVID19 pandemic. WIth the resources of the Pediatric Retinal Research Lab, here in the Eye Research Institute of Oakland University, I will do my best to make sure we still provide this DNA-sequencing service to patient families of Associated Retinal Consultants (Michigan). Sequencing will be run as much as possible at no cost to the patients using donations from the public to either the Eye Research Institute or through the Pediatric Retinal Research Foundation, a non-profit charitable foundation that kindly funded our purchasing and installation of this sequencer. Read more here at our lab’s blog page. READ MORE..

Photoreceptor-Maturation Gene-Activation Database: Genome-wide Map of RNA-Polymerase-II Binding

One of the most useful research resources for researchers interested in genes activated in mammalian photoreceptors in vivo is our mapping of RNA-Polymerase-II (Pol-II) in most genes of the mouse genome. I have programmed a server-link so the research community can compare the presence of Pol-II on photoreceptor genes at age P2 (immature photoreceptors) and age P25 (mature functional photoreceptors) without the need for using any proprietary software. These tracks will load for you in the Genome Browser at UCSC.  (Once you get there, find the “Configure” button below the graphical window and set the label area width to 26 characters and text size to 14.) Remember to ZOOM OUT 1.5x, so you see the promoter region of your gene of interest. Substantial amounts of Pol-II may be found throughout the gene as well. Distal (far upstream) and proximal (near the transcription start site) regions of a promoter may have Pol-II peaks because those regions are brought together physically in the promoter activation complex.

Use this link to go there now, and find your gene of interest:

Mouse Retina (Photoreceptor) Gene Activation Database

This will load the data for you in a new browser window and begins with the Rhodopsin gene shown. Orange bars show regions of the DNA that had RNA-Polymerase-II bound to them above background controls. There are also “Peak” tracks that indicate the points where the levels of bound polymerase were maximum. An increase in peak value between age P2 and P25, >1.8 fold ratio, indicates a significant expression increase in vivo as rod-photoreceptors matured. So look for your gene. If you would like high-resolution maps of the binding peaks in any gene to use for your own research or publications, please contact me ( I provide this information, no charge, to other retina researchers. If you have questions, email me.

The current team is listed on our Team Page. 

Our Current Research Projects (2019):

  1. VEGF Mechanisms in the Retinal Vasculature: Funded by the NEI/NIH, to elucidate the molecular basis of the effects of different isoforms of VEGF (Vascular Endothelial Growth Factor) on the blood-retinal barrier and specific effects on human vascular endothelial cells. Different isoforms of VEGF vary in their concentrations in conditions such as Diabetic Retinopathy, AMD, and ROP. We have found substantial differences in how isoforms activate retinal vascular endothelial cells.
  2. Biotechnology: bacterial protein production of recombinant human proteins for research on eye disease treatment. Development with Retinal Solutions.
  3. Development of High-throughput, low-cost targeted DNA-sequencing panels for rare inherited retinal diseases. We completed a successful test of our custom “amplicon panel” targeted sequencing using the Illumina DNA-sequencing platform.  This method uses hundreds of PCR reactions to amplify all of the exons, intron/exon boundaries, and promoter regions of candidate genes whose DNA-sequences may be altered and cause many different inherited retinal pathologies. We can screen seven (7) genes including genes that are often involved in the following diseases: FEVR (Familial Exudative VitreoRetinopathy), Norrie Disease, and Retinoschisis. Currently, we have secured some funding support to purchase and install our own Illumina iSeq NGS system for establishing DNA sequencing of patient DNA samples in association with Associated Retinal Consultants of Michigan. This shift in testing methods will bring the testing of one or two genes costing about $2,000 per sample down to just a few hundred dollars to test at least 7 genes. This will also support research into understanding the relationship between disease severity and specific inherited genetic mutations, as well as help more families with these rare genetic conditions. The practical goal is to establish sequencing of a patient’s DNA for about $250-$300 per person and to share with others how to bring this access to small and medium-sized medical practices. That is where most retinal patients are.The scientific goal is to dramatically increase our knowledge of specific gene changes and how they correlate to different disease characteristics, such as clinical appearance and rate of changes in the retina’s structure and function. The human goal is to help more families to finally identify the molecular genetic cause of their inherited condition and to give their physicians and genetic counselors more information to manage and eventually treat their progressive blindness. Speed is important to survey many genes, and this new technology makes this possible. We are one of the first groups to tackle the development of this kind of sequencing panel for retinal disease genes.

Dr. Mitton is a member of the newly formed Global Eye Genetics Consortium.

4. Effects of Valproic acid on the degeneration of photoreceptors in mice that have mouse versions of retinitis pigmentosa.

If you are a student at Oakland University, you can complete your 4995 independent research experiences in ERI laboratories. We also mentor Honors College thesis students and more recently have added Medical School Capstone Research students, and Engineering Biology Capstone students. If you are interested in learning how to do science in our laboratories, please use the form link for student applicants found in the main menu if you are on a large screen, or click here:

Undergrad Research – Mitton Lab &PRRL

Current Lab Member and Lab Alumni News:

May 2019. Dr Ken Mitton and Wendy Dailey attended ARVO 2019 and presented research on VEGFA isoform regulation of primary human retinal endothelial cells. Also, on Norrin regulation of PLVAP expression in the same cell type. Dr. Mitton co-presented a third abstract with Tom Dzialozsynski, Western University (London Ontario) regarding Gensingoside effects on normalization of serum lipids and slowing of cataract formation in diabetic rats. John Trevithick, PhD, Professor of Biochemistry and Kinesiology (Western University), Tom and Ken’s former supervisor and long time friend and colleague was also on the abstract. Dr Trevithick passed away just over a year ago. The 2019 ARVO meeting was the first one ever outside the United States. Vancouver BC. We wanted to make sure that John Trevithick’s research was presented at this first ever ARVO meeting held in Canada. (Dr. Mitton obtained his PhD under John Trevithick at Western University, London Ontario). Without John Trevithick’s influence, the many many Michiganders trained in biosciences in our lab since 2001 would not have had their opportunities here. Life is connections, and at times a series of wonderful accidents. Peter Chen MD, graduated OUWB school of medicine. The second OUWB medical EMBARK program student in the ERI. Michael Sun has joined our group as the 5th EMBARK program student in the ERI, just completing his M1 year in our OUWB program. Michael will be working with us to help establish patient DNA sequencing for rare inherited retinal vascular diseases in our Pediatric Retinal Research Laboratory.

January 2019. OUBW Embark Research medical student Peter Chen (M4), has matched for Ophthalmology Residency at the University of Cincinnati. Peter contributed to our work on VEGFA isoform differences in activation of the AKT pathway.

October 2018. Undergraduate student Megan Moore presented “Differences in the Activation of Human Retinal Endothelial Cell Gene Expression by Isoforms of VEGFA165”. (Megan Moore, Wendy Dailey, Anju Thomas, Ed Guzman, Jennifer Felisky and Kenneth Mitton.) at the Sigma Xi International Undergraduate Student Research Convention. October 27, 2018. San Francisco, CA. Poster.

March 9th, 2018, undergraduate students Jennifer Felisky and Megan Moore both presented talks at the Michigan Academy of Arts, Sciences and Letters hosted at Central Michigan University.

May 2018. OUWB medical student Austen Knapp, MD, graduated in 2018 and matched for Ophthalmology Residency at Cleveland Clinic. Dr. Knapp’s Embark research contributed our data on differences of MAPK (ERK1/2) pathway activation by two isoforms of VEGFA165, included in our presented abstract at ARVO 2018, Honolulu HI, May 2018.

Camryn DeLooff (SUPER program 2013) is currently in the full time MBA program at the internationally renowned business school, the Rotman School of Management, University of Toronto. Quentin Tompkins (SUPER program 2015) has been accepted into several medical schools for fall 2018. Congratulations Quentin. Brandon Metcalf (SUPER program 2014) is now in his M2 year in the OUWB school of medicine. He has also joined our lab again for his medical school capstone research project. Nahrain Putris, another SUPER program alum, has also joined our lab (M2) for VEGFA research.

My Philosophy on doing Science well (Ken Mitton).

As for many biomedical, basic-science research labs, my research flows and changes over time as we make new discoveries that lead us to new questions we form even as we uncover the answers to previous questions. That is the nature of basic science, and it is the way science investigation has always brought the most benefits to people and medicine in particular. While many organizations and countries have attempted to focus research support (funding) into specific diseases, it turns out that the overwhelming majority of high-impact medical discoveries have come from “serendipity”. That is, great useful ideas and tools were discovered to treat diseases simply by exploring how things work.

For example, drugs for controlling high cholesterol were not discovered by deciding to start making drugs for treating high cholesterol. In the course of biochemists investigating how our cells make cholesterol in the first place, chemicals were used to block enzymes to help figure out how cholesterol was made. Some of these chemicals were obviously the idea to become new drugs that could block cholesterol made in the body. Latanoprost, one of the later generation of drugs developed in the ’80s for reducing high intraocular pressure (IOP), was based on the discovery that prostaglandins made by some cells in the eye could increase the aqueous outflow in the eye, and reduce pressure. The basic science was elucidated in animal models. Again, a basic science discovery in the laboratory of physiologist Laszlo Bito at Columbia University was adopted by a Pharma company as the way to make drugs that mimic natural prostaglandins to produce this new class of drugs. As a result, thousands of people around the world have another class of drugs to reduce their intraocular pressure and reduce their risk of vision loss from Glaucoma.

So, you never really know where benefits will arise for biomedicine. That is why many research funding agencies, such as the NIH (USA) and the MRC (UK), understand the importance of funding physiologists and biochemists to explore how things work. In our case, how things work in the eye, and the retina of the eye.


Ken Mitton